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1.  Introduction 

Let an analytic function f of a single complex variable be defined 

In a neighborhood of a point zn by means of Its Taylor series at zn. 

In this paper, we wish to discuss a constructive method for the solution 

of the following problem: Suppose It is known that the function f can 

be continued analytically into a domain R of the complex plane.  It is 

desired to compute the value of f at an arbitrary point b e R, 

By a constructive method (or "algorithm") for solving a problem 

In numerical analysis we mean a sequence of rational functions of the 

data of the problem which converge to the desired mathematical object. 

In a number of special situations classical analysis offers a 

variety of formulas and methods for solving the problem posed above, 

such as the Schwarz reflection principle, or the methods of Mittag- 

Leffler and Borel (see Bieberbach [1955]). The problem is easily solved 

if the function f is known to satisfy a differential or other functional 

equation.  In some cases the problem may also be solved by classical 

methods of summability theory (see Hardy [19AS]).  In a more numerical 

vein, Euler's series transformation sometimes proves to be an effective 

means of continuation (van Wijngaarden [1953])•  Recently, linear pro- 

gramming techniques have been proposed for the solution of a special 

continuation problem (Douglas [i960]; Douglas and Gallie [1959]). 

The above methods apply only in special (sometimes extremely so) 

situations. However, the following technique, due to Weiferstrass, is 

generally applicable (for a recent exposition, see Behnke and Sommer 

[1955], pp. 166-171) . We join the points zQ    and b by a rectifiable 



arc Y lying in R . If 6 > 0 denotes the distance of y from 

the boundary of R , we select N points z1,z?,...,z = b on y 

such that |zk - 3k_1| < 6, k = 1,2,...,N. The Taylor series of f 

at ZQ, having a radius of convergence > 6, enables us to calculate 

the values of f and of all derivatives of f at z.. . Thus the Taylor 

series at z.. Is also known, and can be used to calculate the coefficients 

of the Taylor series at the point z?.  Proceeding In this manner, we 

finally obtain the Taylor series at the point z.T, and thus a fortiori r 
the solution of our continuation problem. 

Clearly, the above method is not constructive in the sense indicated 

earlier.  The data in this case are the coefficients of the Taylor series 

at z = a. While it is true that the partial sums of the first Taylor 

series, and its derivatives, are rational functions of these coefficients, 

their limits generally are not.  Yet these limits are required to continue 

the process. In what follows we shall describe a modification of the 

above Veierstrass ian method of continuation which transforms it into a 

constructive process. 

2.  Matrix formulation of Weierstrassian analytic continuation. 

Let a. + a-Cz - z..) + a?(z - z.)  +•••  be the power series 

defining f near z«,  and let 

f(z) = b0 + b1(z - z1) + b2(z - z^
2 +•.. 

near z1.  If  |z, - zn|  is smaller than the radius of convergence 

of the series at zQ,    we have 

bo = ^ = ao+ Vi + 6^2+•••' 



where &_ - z. - zn, and more generally for k = 0,1,2,... 

(1) b^ifWc^) 

2! 

'2ak+2+*"' 

k+2 -I 

where denotes a binomial coefficient. 

We can render these formulas more lucid by the use of matrix 

notation.  We denote by A(z)  the infinite column vector whose components 

are the coefficients of the Taylor series at the point z.  For instance, 

0 

A(z0)  =1 a2 

0 

A(z1) = 

We now define an infinite upper triangular matrix    M(z)     as  follows: 

M(z)   =  (amn), m,n = 0,1,2,..., 

where 

{:y-m' 
mn 

n > m 

n < m 



Written out in full. 

/' : 
M(z) = 

z z z 

2z 3z2 Az 

1 3z 6z 

1 Az 

1 

■■\ 

.. 

The relation (l) now can be combined into the single relation 

(2) A(Zl) =yi{b1)  A(z0) 

In a similar manner we find, if 1 z, - z. , | is less than the radius of 

convergence of the Taylor series at ^ -]> 

(3) A(zk) =M(6k) AUj^), k = l,2,...,N, 

where 6, = z, - z, 1. Thus the solution of our continuation problem is 

given by 

U)  A(zN) =M(6N) MCSJJ^) ••• Md^) A(z0), 

with the understanding that the product is to be formed proceeding from 

the right to the left. 

The non-associativity of the product in (4) is shown by the following 

remark: It is easily seen that the "continuation matrices" M(z) satisfy 

the addition theorem 

(5) MCz') M(Z") = M(z' + z") 

for arbitrary complex z'  and z". Since 6N + & . +•••+ 6^ = zN - z-. 



the product on the right of (A) thus is formally equivalent to 

M(zN - z0) A(Z0).  However, this expression is without analytic 

content, since it is tantamount to evaluating the Taylor series at 

z^ for z = z.,, where it diverges in general. 

3«  Definition of the continuation algorithm 

We denote by M (z) the finite matrix consisting of the first 

m rows and n columns of the matrix M(z) . Similarly, we denote by 

A (z)  the column vector comprising the first n elements of the vector n 
,(10 A(z). By the symbol A   we denote vectors intended to approximate 

A (zj. nv k' 

At first sight,  it would seem reasonable to transform the Weier- 

strassian method of continuation into an algorithm by forming the 

vectors 

A^  = M       (O  M       (6.T ,)    ••• M       (O A  (zJ, n n,nv  N      n,nv  N-l n,ny   1'     nx  0  ' 

where n = 1,2,....  However, since products of finite matrices are 

always associative, and since the addition theorem (5) also holds for 

the finite segments M  ,  this amounts to nothing more than to forming 

(N) = M  (z.T - z^) A (z-J , n,n^ N   Cr  nv 0 ' 

which is precisely what we obtain by substituting z^ - z^ into the 

power series defining f at z = z».  It thus is clear that if we wish 

to obtain a convergent algorithm, the finite segments of the matrices 

M(6 )  in (4) must be chosen in a more sophisticated manner. 



It is fairly obvious that if convergence is to be assured, the 

vectors A(z,)  must be approximated particularly well if k is small. 

(The truncation error is propagated forward but not backward.)  We can 

achieve this by replacing the matrices M(6, )  by rectangular segments 

that have  q times as many columns as rows, where q is an integer 

> 1.  We thus are led to defining the approximating vectors A   in 

the following manner:  For n = 1,2,...,  let 

(6)  A(N) = M   (5j M    0(6M J ..• v '   n     n.nq^ N       2V N-l nq,nq 

••• M N-l^l5 A N^O^ nq        nq 

These vectors evidently depend on the "magnification ratio"  q.  For 

each n, they can be built up recursively as follows: 

(7) 

A'
0)
 = A  (z ) 

nq    nq 

A(k)   =M (6 ) A^-^ Ä N-k    N-k  N-k+lv V A N-k+l' nq      nq   ,nq nq 
k = 1,2,...,N. 

U.       Convergence of the algorithm. 

Let r,  be the radius of convergence of the Taylor series repre- 

senting f in a neighborhood of the point z, .  For Weierstrassian 

analytic continuation it is necessary that  16, | = I z, - z, , | < r, 1 , 

k = 1,2,...,N. Let this condition be met, and let r' be any number 

satisfying  6, < r' < r, , . By Cauchy's theorem there exists a constant 

C,  such that 
k 

nlC, 
f^U^)! <—r^ , n = 0,1,2, • • • • 



Setting p. = |6, |/r',  this may be written in the form 
k" k 

.(n) pk n 

f   ^k-^'^nl(Tn") ck'   n = 0,1,2, 

Only a slightly stronger condition is required for the convergence of 

the algorithm (7). 

THEOREM. Let there exist constants C,  and p, , 0 < p, < 1, 

such that 

(8)  |fW(z)| < n^T-X)  c,,    n = 0,1,2,..., 

and for all points^ z on the straight line segment joining  z, -[ 

z,  (k = 1,2, ...,N). Then there exists a number CL. such that for 

all q > q  the elements of the vectors A    converge to the corres- 

ponding elements of A(z )  as_ n -* °°. 

The question as to the infimum of all q» for which the theorem 

is true is left open. An upper bound for this infimum, however, will 

emerge from the proof. 

5.  Proof of the Theorem. 

Letting 

R^ = A (O - A« 
n     n k    n 

(k) 
for k = l,2,...fN and for all values of n  for which Av   is defined, 

our aim is to show that R^ '-* 0 as n -«■ 0°.  Our first goal is a recur- 
n 

rence relation for R 
(k) Such a relation is obtained via a recurrence 

relation for the vectors A. (z,) 
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LEMMA 1.      For    k = 1,2,...,N| n = 1,2,...,    let 

n rk 

\ (••■J 
-n+1 

Then 

(9)     A (aj  =M        (6jA    (z.   J   + ®. D(k) , v  '       ns k' n,nqv k'  nqx  k-l' k n    ' 

where    ®,     denotes a diagonal matrix whose elements are bounded by    C, . 

Proof.    By Taylor's  theorem, 

-Vf(m)(zv)   =irf
(ra)(Zvn)   +-lTf(m+1)(Zvi)6v + m! x  k'       ml v  k-l'       mill v k-l'   k 

(nq-1) 
•+ mUnq - m - 1) I   f (zk-l,&k 

qn-m-1 

.   1  f       / +Nnq-m-l„(nq),  x,, + ml(nq -m - 1)1  >       (zk - t) ?    H (t)dt, 
zk-l 

m = 0,l,2,...,n - 1.     It follows that 

Vzk)   ^n.nq^k^nq^k-l5 

Ol(nq - 1)!   (zk  " t) 

+ 5    f(nq)(t) 
Zk-1 

iKnq1- 2)1   (zk  " t) 
nq-2 

dt. 

,nq-n  1  / .\i 
(n - l)l(nq - n)I  (zk " t) 

Formula (9) now is obtained by estimating the Integral by means of (8) 



n .        ' 'n k        N-k* 

Subtracting   (7)   from (9)  we now find 

R(k)   =M (6j   R^"1)   +®VD^), n n,nqv   k'     nq k    n    ' 

where n runs through all multiples of q  . A standard argument 

in the theory of difference equations now shows that 

N 

k=l nq' 

where 71^= I»  and for k = 1,2,...,N - 1 

"nlk) =WV M    2(W •••M N-k-i  N-k^W- 7 ^     nqjnq nq    ,nq 

A 

We shall denote by A the vector or matrix whose elements are 

the absolute values of the elements of A, and use a notation such 

as A < B to indicate the corresponding inequality between corres- 

ponding elements. We then have, in view of Lemma 1, 

N 
2 

k=l nq" 

where    fr      = I»    SJld for    k = 1,2,...,N  - 1 

(10) R(N)   <    2    Cv fr^  D(kJT v   , x n      — , _-,     k   Mn _N-k  * 

'n 

^   ="n,nq(6N)      -  M    N-k-1      N-k^k+l>' 
nq ,nq 

The resulting products  of matrices in  (10)   can be further e»timated by 

a reduction fonnula based on the following  result. 

LKMMA 2.       Let 

(11) % > 1 + IK* 
-1 

k = 1,2,...,N - 1. There exist constants K,  not depending on q or 



10 

n such that for all q > <lk and all sufficiently large n 

where 

(13) z,   = - 
k        (q-D^ 

-li 
\vq-l  PkPk+ll&k+l6k   '• 

A value for K.  will be given below. 

Proof. For brevity we set  [6, f 

the m  element of the vector 

we have 

'  &' l6v+J " b* Demoting by c k+1 m 

(u)        cm = PJ a »"m s. 

where 

3 * (:)(f)+(-:
l)(.^>- 

.nq-l-m 

It turns out that the dominant term in the sum S is the last term. 

Factoring out this term, we have 

(15) 

where 

_ (nq - l\(   nq2 VbN ^^ s 

5 - i  j    nq - m - 1 a |  (nq ^ m - 1) (nq - m - 2)  (a^2 t 

1     nq2 - nq + 2 b  (nq2 - nq + 2) (nq2 - nq + 3) b 



The sum S.. terminates. Since 0 < m < n, it is clearly bounded by 

the geometric sum 1 + X + X +•••, terminated after the same number 

of terms, where 

v -   nq - 1   a 
"2  —Tb * nq - nq + 2 

Now 

- n(l - J- .  = nq - 1 
< 

nq - nq + 2  q(nq -l)+q-nq+2  q-1 

hence, if q > q, , 

^^Tb-^i^TT^1' 

Slimming the geometric series, we thus have 

(16) Sl < J V 

where 
a(qk - 1) 

Kk " b(qk ,1) - a, ' 

Since q > 2, m < n, we have 

(">   K%r^)4*)(nf)- 
Th« mth element of D^k+1^ being given by 

(") 4ft = Cf-^
b""' 

ve thus have from (U) ,(15) ,(16) and (17) 

(IS) 
2 ,   nq -nq 

cm ^ Pk Pk+1 
/^ /nq2\ K d 
Va^ \nq I    km 
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Estimating the factorials by means of Stirling's formula, we have 

M =   ('"'2)! i— r ^ inq 
Vnq/       (nq)l(n(q2 - q))l        JMl  - l)n LCq - l)""1] 

and thus, in view of the presence of */n    in the denominator. 

(19) V^ ) < L(q -1^4 
for all large    n.    It thus follows from (18)   and  (19)  that 

^ < m — [(q .^q-l Pkpm ^J       Kkdm' 

which is  the desired result. 

It  follows  from (12)   that 

N-k   - ■pKk)   -(k) nqw-Ä -^(k+l)   -(k+1) 
1 'n      D    N-k ^ Kk Zk ' 'n D    N-k-1' nq nq 

and thus, using induction. 

(20)     fT<k)  ^k;T_v^KvK, ■n N-k - "k    k+1 
nq 

K nq^^nq^^1...     nq     *(N) 
%-l Zk ^k+1 4N-1    n     ' 

:(N) We shall estimate D    hy a bound very similar to that of Lemma 2. 

LEMMA 3.      Let 

(21) %>1+   I»N 

There exists a constant K,,,  independent of n o£ q,  such that 
Ä(N) n 

the elements of D^ '  are bounded by KN ZN for all q > q  and 
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all  large    n,    where 

(22) ZN = ^T^^1"1- 
A
'(N) 

Proof.  We bound the elements of the vector D   by the sum of 
  n   J 

the absolute values of all elements. This sum can be formed by multi- 

plying D^ by the matrix M, (l). An application of the method of 

proof of Lemma 2 now yields the bound of Lemma 3> where 

In view of (10), (20), and Lemma 3 we find that every element of 

IT   is bounded by 
n ^ 

(23) 
N 
2 
i ^ \ 

N-k  N-k 

c  \+i 

1 ••• ^J ' 
where 

k   k k k+1 • KN' 

and where the numbers  Z,  are defined by (13) and (22) .  The proof of 

the theorem now is an easy consequence of the following fact: 

LEMMA. 4.   For k = 1,2,...,N, 

(24)     11m Zk = 0, 
q-+-oo 

Proof.  If we set p   = I&k+1I =1»  we have 

irq 
q 

Z, = (1 - i)^ (q - 1) p- • c q 
k  "k 



u 

for k = 1,2,...,N, where 

w     ^^kiii^1 \+i 

Relation (24) now follows trivially from the well-known result 

lim (1 - i-)-q = e 
q->-oo    4- 

and from the fact that,  by virtue of     |p, |  < 1, 

liir  (q  - 1)   p^ = 0. 
q-+oo 

In view of Lemma U  there certainly exists q* such that  |z, | < 1 

for q > q*, k = 1,2,...,N. If q > qg, where qQ = inax(q*,q1,q2,... ,qN) , 

then all elements of IT  are bounded by the expression (23) , which 

tends to zero as n -♦• «>. This completes the proof of the theorem. 

6.  Choice of the enlargement ratio 

Once the continuation points a. ,z_,... ,zM, and with them the 

numbers  p,  and 6,  (k = 1,2,...,N), are fixed, the enlargement ratio 

q has to satisfy the following conditions:  In order to satisfy (ll) 

and (21) we must have 

(A) q > 1 + I" 
Jk+1 

k = 1,2,...,N 

( ft .. = l) ,  and in order to make  |Z, | < 1, we must require 

(B) 
(q - 1) 

P? Cv < 1. q-1 rk k 



where    c,     is given by  (25),   or approximately 

(26) (q - l)pJJ < e"1^1,     k = 1,2,...,N. 

Condition (26) shows that unless p,  is small, q may have to be 

taken quite large.  Small values of p.,  on the other hand, force us 

to make N,  the number of continuation steps, large.  Thus in any case 

the continuation matrices M     are likely to be large. As an example, 

we consider the problem of continuing the function log z  around the 

unit circle, starting from z = 1.  Choosing the continuation points 

ikcp    , TT 
z = e  ,  where  <p = 7- , 

we find 

Pv = p = 2 tan I = 0.535898, 

Since all  16, |  are the same in the present case, condition (A ) is 

satisfied for q > 2,  and condition ( B) simplifies to 

/   n > q-1 .    -1 
(q - l)p^  < e  . 

This is satisfied for q > 5, but not for q = 4-.  Since  N = 12 in 

the present problem, even the very first matrix used in the algorithm (7) 

12 
has  5  = 2A4.,IAD,625 columns. 

I 

7.  Numerical examples 

The algorithm (7) has been carried out numerically in some very 

simple examples.  The author is Indebted to Mr. Thomas A. Bray of the 

Boeing Scientific Research Laboratories for his expert assistance in 

the planning of these computations.  We wish to report briefly on the 

results of two such computations. 
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(l)  The power series 

f(z) = 1 - z + z2 - z3 +••• 

has been continued using the points z,   = 0.35k, k = 0,1,2,3« An 

enlargement ratio q = 3 was used. The following table lists the 

first components of the vectors A. (k) n , and of the exact vectors A(z,). 

1 2 3 

1 O.7407AO741 0.588239567 0.492237049 

2 O.7407AO7A1 0.58823529A 0.487767430 

3 0.7407407A1 0.58823529A 0.487805203 

4 0.7/W74O7a 0.588235294 0.487804475 

A(zk) 0.74D7AO7A1 0.588235294 0.487804878 

The values in the last column approximate the function at a point where 

the original power series does not converge. 

(Il)  The power series 

a» / n \ n+1      z .. 
f(z) = 2 i^s  zn = 5 t"1 log(l + t)dt 

n=l  n^       0 

was continued using the points z, = 0.3k, k = 0,1,2,3,4« Again working 

with q = 3, the following values of the first components of A^ ' were 

found: 
\ k 1 2 3 4 
n   ^v 

1 0.280074 0.528107 0.752163 0.956771 

2 0.280074 0.528107 0.752163 0.957406 

3 0.280074 0.528107 0.752163 0.957405 
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